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Fully developed air flow has been investigated over a Reynolds-number range of 
8280CL346700 in a duct that simulates two interconnected subchannels of a rod 
bundle with a pitchldiameter ratio of 1.20. Based on equivalent hydraulic diameter, 
friction factors were found to be 2 yo lower than for pipe flow. Detailed measurements 
were made at a Reynolds number of 200000 of axial velocities, secondary velocities, 
and the Reynolds stresses. The distribution of axial velocity near the walls (normalized 
with the local friction velocity) could be expressed by an inner law of the wall for 
y+ up to 1500. Distributions of the normal Reynolds stresses and the mean turbulence 
kinetic energy were similar to those observed in a number of pipe and two-dimensional 
channel flows and could be correlated using the axial-velocity fluct,uations normalized 
with the local friction velocity. Maximum secondary velocities were about 1.5 yo of 
the bulk axial velocity. The ‘Ic-e’ turbulence model and an algebraic vorticity source 
for generating secondary velocities enabled the computation of axial velocities, 
secondary velocities, and mean turbulence kinetic energies that are in satisfactory 
agreement with those measured. 

1. Introduction 
Over the past 15 years a number of turbulence models and numerical procedures 

have been developed that allow turbulent flow to be predicted in ducts of non-circular 
cross-section. Much of this work has been done to  permit the calculation of flow and 
heat transfer in the core of a nuclear reactor, where the fuel elements are arranged 
as a matrix of rods along which the coolant flows axially. 

The most widely used procedure has been based on the ‘ k-1 ’ (or ‘ k-e ’) turbulence 
model for the effective viscosity, together with a model for the normal Reynolds 
stresses that allows the small but significant secondary velocities to be generated. 
These procedures have been used to  predict distributions of mean axial velocity, 
turbulence kinetic energy, and secondary velocities in rod-bundle geometries by a 
number of investigators (Carajilescov & Todreas 1976; Aly, Trupp & Gerrard 1978; 
Seale 1979; Trupp & Aly 1979; Bartziz & Todreas 1979; Gosman & Rapley 1980). 
However, the results of these applications have often proved inadequate and 
contradictory (Seale 1982), and the lack of high-quality experimental measurements 
of the turbulence structure in rod bundles has inhibited the development of the 
turbulence models. 

Turbulent diffusion between adjacent subchannels in rod-bundle flow is also known 
to be much higher than predicted by simple isotropic diffusion theory and is relatively 
insensitive to changes in gap width. A variety of explanations have been suggested 
to explain this behaviour. For example Rehme (1978) found that the effective 
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diffusivity in a rod bundle is highly anisotropic, with very large apparent diffusivities 
parallel to the rod surface and through the gaps. On the other hand Nijsing & Eifler 
(1970) have claimed that the unexpected behaviour of the diffusion can be entirely 
explained by the presence of secondary flows. Seale (1979) supported Rehme and 
indicated high anisotropies as the primary source of high intersubchannel mixing, 
with secondary flows having only a small effect. 

Secondary flows, although producing significant and observable modifications to 
the mean flow, are extremely small and no reliable measurements have been reported 
in rod bundles. A complicating feature is that it is extremely difficult to build a rod 
bundle with the precision necessary to ensure that cross-flows caused by the geometric 
imperfections do not swamp those generated by the turbulence structure. 

The object of the present work was to build a simulated rod bundle to an extremely 
high geometric precision and to  measure with as much accuracy as possible the 
primary quantities which i t  is claimed can be predicted by turbulence modelling, i.e. 
axial velocity, turbulence kinetic energy, and the secondary velocities. 

Previous experimental investigations of the Reynolds stresses and secondary 
velocities in fully developed flow in rod bundles have been reported by Kacker (1973), 
Rowe, Johnson & Knudsen (1974), Kjellstrom (1974), Trupp & Azad (1975), 
Carajilescov & Todreas (1976), Rehme (1978), Aly et al. (1978) and Hooper (1980). 

The turbulence structure for fully developed flow through the subchannels formed 
by the rod array depends on the pitch-to-diameter ratio p / d .  For fairly open ducts 
( p l d  2 1.2) the distributions of the three components of the normalized turbulence 
intensity normal to a wall are similar to  those measured in circular ducts or between 
plane surfaces. For more closely spaced arrays the turbulence structure, especially in 
the rod-gap region, departs markedly from the pipe-flow distributions. This behaviour 
is generally attributed to the increasing strength of secondary flows as the rod-gap 
spacing is reduced. However, most attempts to measure the tiny secondary velocities 
in rod bundles have not been successful. 

Kacker (1973), using a hot-wire technique suggested by Hoagland (1960), measured 
secondary flows in a circular duct containing two small rods. I n  the gap between the 
rods the secondary velocities were about 0.5% of the mean velocity. 

Rowe et al. (1974), using a laser-Doppler anemometer, measured axial turbulence 
intensities in ducts containing rods arranged in a square array ( p / d  = 1.25 and 1-125). 
In  the gap region high values of axial intensity were observed, which became more 
energetic as the rod gap was decreased. The presence of secondary flows were inferred 
from distortions of the intensity distribution. 

Kjellstrom (1974) used a rotatable hot wire to  measure the secondary flows in a 
triangular-array rod bundle ( p l d  = 1.217), but the results were not satisfactory and 
there appeared to be a large-scale circulation in the entire bundle with a circulation 
velocity about 1 Yo of the bulk velocity. This circulation was ascribed to small 
geometric inaccuracies in the tunnel. Trupp & Azad (1975) were unable to  measure 
the secondary velocities using X-array probes in triangular-array rod bundles and also 
reported problems due to geometric imperfections. 

Carajilescov & Todreas (1976) used a laser-Doppler anemometer in a duct 
simulating an interior subchannel of a triangular array (p /d  = 1.123) but experimental 
error precluded identification of secondary velocities having a magnitude less than 
0.67 yo of bulk axial velocity. 

Rehme (1978) investigated turbulent flow in a duct consisting of a single row of 
rods ( p / d  = 1.071) between two flat walls. The rotated hot-wire technique was used 
to measure the Reynolds stresses. Secondary flows were evident from the distortions 
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to  the distributions of the turbulence intensities but again they could not be 
measured. 

Aly et al. (1978) investigated turbulent flow in an equilateral triangular duct, 
regarded as representative of rods on a triangular array having unit pitch-to-diameter 
ratio (i.e. rods touching). Reynolds stresses and secondary velocities were measured 
using an X-array probe and checked using a rotatable 45’ slant wire. The distributions 
of turbulence intensities normal to the walls were similar to those observed in pipe 
flows, maximum secondary velocities were about 1.5 yo of the bulk velocity. 

Hooper (1980) used hot-wire anemometry to measure the Reynolds stresses in two 
ducts simulating rods on a square array ( p / d  = 1.194, 1,107). Differences in the 
turbulent flow structure from that of axisymmetric pipe flow were found; these 
departures were strongly dependent on pitch-to-diameter ratio. This behaviour was 
attributed to secondary flows, although these could not be resolved by direct 
measurement. 

In  the present work on the subchannel of a simulated rod bundle, measurements 
have been made of the axial pressure gradient, local wall shear stress, mean axial 
velocities, the two in-plane secondary velocities, and distributions of the five 
Reynolds stresses (excluding the extremely small in-plane shear stress - p E ) .  The 
measurements were made at a single Reynolds number of 200000 since most of the 
quantities are only weak functions of Reynolds number and the primary aim of the 
research was to produce accurate data for use in testing prediction methods. 

From an assessment of likely construction tolerances it was clear that  a long rod 
bundle having the necessary geometric precision could not be built. Disturbances to 
the flow caused by the support structure that holds the rods in position are also very 
difficult to avoid. It was felt that  for the purpose of comparison with prediction 
methods the major features of the turbulence structure and the secondary flows would 
be observed in a duct that  simulated typical subchannels of a rod bundle. A prediction 
method that cannot at least reproduce the flow in an ideal simulated subchannel is 
unlikely to be satisfactory when applied to the subchannels of an ‘infinite ’ rod bundle. 

A simple shape was chosen: two half rods set in a rectangular-section duct. The 
interconnected subchannels that this forms are a primary feature of the subchannels 
in all rod bundles, and the duct shape lends itself to accurate location over the full 
length of the tunnel. The interior corners of the duct generate distinct patterns of 
secondary flows: these would not be present in the subchannels of a rod bundle. 
However, corner flows have been widely investigated, and their presence in the 
present duct was regarded as a known standard against which the measured 
secondary velocities in the core and gap regions of the subchannel could be compared. 

The Reynolds stresses and secondary velocities were measured using the rotated 
hot-wire technique. This method requires six separate measurements to be made a t  
a given position: measurements were t,herefore confined to a limited number of points. 

Attempts were made to reproduce the measured distributions of axial velocity, 
secondary velocity, and mean turbulence kinetic energy by numerical prediction of 
the flow. The predictions were based on the general elliptic finite-difference procedure 
of Gosman et al. (1969) and on the ‘ k-’ turbulence model (Launder & Spalding 1974). 
A novel algebraic expression was derived for the source of axial vorticity to  allow 
a correct pattern of secondary velocities to be generated and to give agreement with 
the experimental data. 
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2. Prediction of the turbulent flow 
Use of the ' k-e ' turbulence model and the Gosman numerical integration scheme 

is a well-established technique and only a brief outline of i t  will be given here. 
Consider the turbulent flow along a straight duct of non-circular cross-section. For 

ease of interpretation the equations of motion will be written in Cartesian coordinates 
with x along the main duct axis, y normal to, and z parallel to a wall. The axial velocity 
is U ,  and V and W are the in-plane secondary velocities. The corresponding 
fluctuating components of the velocities are u, u and w, and an overbar designates 
time averaging. 

2.1. Axial-momentum equation 

The following equation describes the conservation of axial momentum for fully 
developed turbulent flow of a constant-property fluid : 

The turbulence shear stresses were simulated using the concept, of an eddy viscosity 
(assumed to be locally isotropic); the eddy viscosity was calculated from the 'k-e' 
turbulence model, viz. 

where Cp is a constant, 7r is the density, k is the mean turbulence kinetic energy, and 
e is the dissipation of the turbulence kinetic energy. Both k and e were found from 
the solution of the appropriate conservation equations. 

2.2. Secondary velocities 

The calculation of the secondary velocities V and W was performed according to the 
scheme proposed by Gosman et al. (1969) in which the equations describing the 
conservation of momentum in the y -  and z-directions are replaced by a stream 
function $ and the axial vorticity o (thus eliminating the in-plane pressure 

The equation for the conservation of axial vorticity becomes 

where the vorticity-production term S, is given by 

This term can be regarded as the source of the secondary flows. 
A number of investigators have shown that the shear stress terms in (4) are 

negligibly small compared with the normal-stress terms ; see for example the 
measurements of Brundrett & Baines (1964) in a square duct, and those of Aly et al. 
(1978) in a triangular duct (although deep in the corner of the latter duct there was 
a significant contribution from the shear stresses). Trupp & Aly (1979) performed 
calculations with and without the shear-stress terms for the subchannels of a rod 
bundle and found that the normal-stress vorticity production predominated every- 
where in the flow cell. 
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Vorticity production was therefore considered to be solely due to the imbalance 
in the normal stresses, and (4) becomes 

I n  the computations reported here, this term has been evaluated in local coordinates 
aligned with the nearest wall since the justification for omitting the shear stresses 
rests on empirical evidence in which the axes were normal and parallel to a wall. 

For the present case of weak secondary flows and use of an eddy viscosity Launder 
& Ying (1973) reduced the differential transport equations for the Reynolds stresses 
proposed by Hanjalic & Launder (1972) and derived the following algebraic equation 
for the difference in the normal stresses: 

where C is a constant. When this equation was used, together with (5), to  generate 
the axial vorticity in the present duct the pattern of secondary flows produced did 
not allow t,he measured distributions of axial velocity and turbulence kinetic energy 
to be reproduced. After a careful examination of the problem the following algebraic 
equation, which gives the source of axial vorticity directly, was derived: 

where ;i = mean wall shear stress, y = normal distance from wall, Q = normal 
distance from wall to surface of no shear, gm,, = maximum value of 9, d#/dz = rate 
of change of 9 parallel to wall, and 

YP = 1 -$/gmax, YM = 1 - 2.4Y$, YL = 1 -y/Qma,, 

Y, = { 1 +  Y~+(4-Yy,,)Y9--((1- y29(4- Y M ) } .  

The surface of no shear is assumed to be coincident with the position of the maximum 
axial velocity on the normal from the wall. A full derivation of (7 )  has been given 
by Seale (1982) : for convenience this is summarized in appendix A. 

2.3. Solution of the equations 

The differential transport equations for stream function, vorticity, dissipation of 
turbulence kinetic energy, turbulence kinetic energy and axial velocity can all be 
expressed in a common elliptic form (Seale 1979): 

where 4 is taken as the dependent variable and the functions a ,  b,, b,, c and d for 
each equation are given in table 1. The values of the various constants were those 
recommended by Launder & Spalding (1974) : 

C,, = 1.44, C,, = 1.92, Cp = 009, Pre = 1.3 and Pr, = 1.0. 

The equations were solved for an irregular Cartesian grid using an upwind 
finite-difference technique based on the general elliptic procedure of Gosman et a!. 
(1969). Where the grid met curved surfaces, special treatment was required for the 
representation of the boundary condition for axial velocity, and a simple algebraic 
expression was derived which gave the correct momentum flow to the surface. The 
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a b, ( = b,) c a 
b 

@ 
w 1 1 p -p-(v'!-w'J) 

l4 0 1 / P  1 --w 

P', 

Pr, 

ay a2 

E 1 P+ru, 

k 1 P+tct 

U 1 P+& 1 ap/ax 

TABLE 1 .  Coefficients in the elliptic differential equations for w ,  $, B, k and U 

remaining boundary conditions presented no special problems a t  curved surfaces. 
Details of the boundary conditions are given in Seale (1979). However, the explicit 
form of the logarithmic law due to  Patankar & Spalding (1970) used for deriving the 
boundary condition for axial velocity, was modified slightly to give agreement with 
the measured distributions of velocity near the walls. 

The majority of computations were performed with a 21 x 25 grid over a sym- 
metrical quadrant of the duct. A few comparative solutions were obtained a t  a single 
Reynolds number with a 60 x 70 grid: agreement was within 1 yo for friction factors 
and 5 yo for the secondary velocities. 

3. Wind tunnel and instrumentation 
3.1. Wind tunnel 

The wind tunnel, up to the test section of the current work, was that used previously 
by Seale (1977) and is fully described there. Atmospheric air was blown through the 
tunnel and discharged to atmosphere a t  the exit. 

Following the blower, the air passed through an air cooler, which allowed precise 
control of the air temperature, through a flow-measuring orifice (to BS1042) and into 
a large transition box equipped with baffles and screens. The air was discharged from 
the transition box through a contraction having a rectangular exit, into a duct of 
rectangular cross-section 9 m long followed by a gentle contraction 1.8 m long into 
the test section. The velocity distribution of the air entering the working section of 
the tunnel was symmetrical to within 1 yo. 

The length of the test section of the tunnel was 18 m,  i.e. 120 equivalent diameters. 

3.2. Test section 

The cross-section of the tunnel is shown in figure 1 .  The tunnel, which simulates two 
adjacent subchannels of a rod bundle and had no support structure to  disturb the 
air flow, was made from precision-machined Perspex rigidly held within a steel frame. 
Considerable care was taken to ensure the precise location of all parts of the tunnel. 
A detailed survey of the tunnel showed the following maximum deviations from the 
nominal dimensions: 0.6 mm over the first 9 m, 0.3 mm for the next 4 m, and 0.1 mm 
over the last 5 m. Distortion of the tunnel caused by the air pressure was less than 
0.2 mm a t  entry. 

The central axis of the tunnel was located to within 100 pm over the 18 m length 
using a surveyor's level. 

Static pressure taps were positioned along the upper flat surface of the tunnel at 
1.85 m axial intervals giving 10 tapping points. The test plane was located 120 
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FIGURE 1. Cross-section of tunnel (dimensions in mm). 

equivalent diameters from the test-section inlet, and 10 mm from the end of th; duct. 
End effects at this position could not be detected. 

3.3.  Measuring technique 

The determination of the Reynolds stresses and the secondary velocities a t  any point 
required separate measurements to  be made using a Pitot tube, a normal hot-wire 
anemometer, and a 45' slant hot wire rotated into four angular positions. The 
technique employed by Rehme (1977) was used to achieve the extremely accurate 
positioning required by this procedure. A microscope is focused sharply onto the end 
of a pointer, the absolute position of which is known. The pointer is removed, and, 
without altering the setting of the microscope, the measuring probe is brought sharply 
into focus. The position of the probe is then known to within about 16 pm, the depth 
of field of the microscope. A DISA 55H01 traversing unit was used to  locate the probe 
in the field of flow. 

The angle between the mid-section of the slant wire and the central axis of the duct 
was set to within 0.1" of 45" using a comparator method. 

3.4. Instrumentation 

Axial velocities and wall shear stresses were measured by a Pitot tube with outside 
diameter 1.473 mm and inside-to-outside diameter ratio of 0.6. The Pitot pressure was 
measured with a Betz manometer (accuracy k0.05 mmH,O). 

Turbulence measurements were made using DISA constant-temperature hot-wire 
anemometers: the 55P12 single slant wire and the 55Pll single normal wire. These 
probes have a sensing length of 1.25 mm. The response of the wires was measured 
by a Solartron Microprocessor Digital Voltmeter 7055 and a DISA 55035 r.m.s. 
voltmeter. 

3.5. Calibration procedure 

All the hot-wire probes were calibrated external to the tunnel using the DISA 55090 
calibration facility. Since the air temperature during the calibration differed by up 
to 3 "C from that of the measurements in the tunnel, an adjustment was made to  the 
Calibration results. The adjustment was determined using the procedure of Bearman 
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(1971). This technique was checked experimentally over a temperature range of 30 K 
and found to be accurate to better than 1 %. 

The calibration was expressed in the form E2 = Ei+ Bun,  where U is the known 
velocity of the air, E is the d.c. voltage across the anemometer, and E& B and n were 
regarded as calibration constants. These were found by using a NAG optimization 
routine?, which minimizes the sum of the squares of the differences between the 
experimental points and the calibration curve. This gave a typical maximum 
deviation between the measured points and the fitted calibration curve of 0017 yo 
on voltage and 011 yo on velocity. 

The hot-wire anemometers were calibrated before and after each traverse : the 
results obtained during the traverse were only accepted if for any voltage E the 
velocities given by the two calibrations did not differ by more than 1 yo and the term 
(E2 - E;)l/" did not change by more than0.25 % . The reasons for these criteria are given 
in appendix B. 

4. Experimental results and discussion 
4.1. General 

Before starting the programme of tests, measurements were made a t  the tunnel exit 
to confirm that the flow was symmetric between the four quadrants. The axial velocity 
distribution was measured along the central vertical axis of the tunnel and along 
horizontal traverses midway between the flat surface and the tubes. Symmetry of 
the wall shear stress was checked a t  a limited number of positions along the upper 
and lower flat surfaces. The results showed that deviations from symmetry were 
within 0.3 yo for the axial velocity and within 0 7  % for the wall shear stress. 

On the central horizontal axis along the gap between the two subchannels the axial 
shear stress fell to zero. Similarly the Reynolds shear stress -p= along the central 
vertical axis did not differ from zero by an amount greater than the uncertainty in 
measuring the Reynolds shear stresses (about 0-02 q). 

It is reasonable to conclude that the flow was symmetrical and that the results 
measured in the single quadrant were representative of the entire duct cross-section. 

Since the six separate measurements at each point required several days of testing, 
the question was considered of whether identical conditions could be reproduced for 
each test. The temperature of the air could be controlled and was held constant. 
Variations in atmospheric pressure however affected the responses of the flow- 
measuring orifice, the Pitot tube, and the hot-wire anemometer. It was concluded 
that it was not possible to compensate fully for changes in barometric pressure, but, 
since the measurements of the Reynolds stresses and the secondary velocities were 
in terms of ratios, small changes in exit conditions would not affect the derived results. 
Accordingly, the pressure difference across the orifice monitoring the air flow entering 
the tunnel was held constant since this could be done relatively simply. The 
second-order effect of humidity change on air density was not considered. 

4.2. Tests performed 

Three sets of tests were performed on the tunnel. 

of Reynolds numbers from 82800 to 346700. 
(i) Measurements were made of the pressure gradient along the tunnel for a range 

7 NAG FORTRAN Mark 7 Library (Routine E04JAF). 
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3 ,  I 
7 7 8 9 10s - 3 4 5  

R 
Fi(;iwb; 2. Friction factor versus Reynolds number in simulated rod bundle. 0 ,  present experimental 
d a t a ;  computed (with secondary flows); -. .-, computed (without secondary 
flows) : ~- .f = 00475Rs?2U6 (least-squares fit to  the present experimentaldata);--------, 
Karmati-Ni kuradse. 

(ii) Measurements were made of axial velocities (using a Pitot tube) and wall shear 
stresses on a fine grid covering the test quadrant, a t  a Reynolds number of 200000. 

( i i i )  Over a more restricted grid, measurements were made of axial velocities, 
secondary velocities, and Reynolds stresses a t  a Reynolds number of 200000. These 
were measured along vertical traverses perpendicular to the top flat surface 0, 15, 
30,45,60 and 75 mm from the central vertical axis of the tunnel. Measurements were 
made a t  5 mm intervals along these traverses, with extra points near the walls. 

A number of these tests were repeated. No problems were met in re-establishing 
the conditions of a previous test and the results were always within the uncertainty 
of the measuring instrument. 

4.3. Friction factor 

The axial pressure gradient along the tunnel was derived from the 10 static pressure 
taps on the upper flat surface. A straight line could be drawn through zero a t  the 
tunnel exit and through the pressures of all but the first tapping point. The gradient 
of the line was found from a least-squares fit constrained to pass through zero a t  the 
tunnel exit. 

The measured axial pressure gradient was corrected for the effect of the com- 
pressibility of the air by assuming the flow to be adiabatic. At the maximum Mach 
number of 0.1 7 the required correction was 4 %. 

The Inass flow was measured by the orifice a t  tunnel entry. The friction factor f 
\I as computed from 

-$D dP/dx  
f =  iPU2 ’ 

where D is the hydraulic diameter and U is the bulk mean velocity. The 95% 
confidence limit on the value of the friction factor is estimated to be within & 2 yo, 
the main source of uncertainty being the measurement of the mass flow using an 
orifice. 

The results are given in the form friction factor f versus Reynolds number Re in 
figure 2 .  A least-squares fit to the data gave the following expression: 

f = 00475Rec0 *06. 
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The friction factors are about 2 yo lower than the values predicted by the Karman- 
Nikuradse correlationt for friction factors in smooth circular tubes. 

An estimate of the friction factor in the tunnel has been made using a method 
proposed by Malak, Hejna & Schmid (1975) in which the turbulent friction factor 
in a non-circular duct is derived from a knowledge of the laminar friction factor in 
the duct. (A similar method has been proposed by Rehme 1973). The laminar friction 
factor in the present duct, computed using the prediction procedure for turbulent flow 
but omitting all turbulence effects, was found to be 16.75/Re. On the basis of 
computations using a number of different (Cartesian) grids and finite-difference 
methods this coefficient is estimated to be correct to within f0.05. Therefore f/fo for 
laminar flow was 1.047, where f,, is the friction factor of the equivalent circular duct. 
Hence, using the equations given by Malak et al., f/fo for turbulent flow is estimated 
to be 1.021. The measured value of this ratio is 0.976. 

4.4. Wall shear stresses 

The shear stresses on the walls of the test quadrant were found by Preston tube using 
the calibration proposed by Pate1 (1965), in the tabular form of Head & Vasanta Ram 
(1971). The results are shown in figures 3(a ,  b ) ,  normalized by the mean wall shear 
stress (as found by integration around the walls of the quadrant). Uncertainties on 
the wall shear stresses are estimated to  be _+O*5yo on individual values and f2yo 
on the integrated mean value. The higher uncertainty on the integrated value is a 
consequence of an inadequate number of measurements in the corners of the duct 
where the stress varies rapidly. 

The mean wall shear stress was found to be 2.394N/m2 by integration and 
2.399 N/m2 by calculation from the measured pressure gradient (at the nominal 
Reynolds number of 200000). I n  view of the uncertainty of the integrated value the 
closeness of these two figures is a coincidence. 

As the sharp corners of the duct are approached the distribution of the wall shear 
stress shows the characteristic deviation from a steadily falling pattern caused by 
the secondary flows generated in the corners. 

The measured distribution of wall shear stress both on the flat walls and on the 
rod surface are significantly more uniform than the distribution computed with 
secondary flows suppressed. Secondary flows have the effect of equalizing the wall 
shear stresses around the walls of the duct. 

4.5. Mean axial velocities 
A detailed measurement of the distribution of the mean axial velocities was done a t  
a single Reynolds number of 200000. The measurements were made using a Pitot tube 
and were corrected for the effects of turbulence, velocity gradient, and wall proximity 
as suggested by Ower & Pankhurst (1966). It is estimated that the mean axial 
velocitibs are accurate to  within f 1 Yo. 

The measured contours of axial velocity normalized by the peak axial velocity are 
shown in figure 4(a ) .  Distortions to the contours caused by secondary flows can be 
detected adjacent to  the two corners. In  comparison with the contours predicted with 
secondary flow suppressed the measured axial velocities are more uniform, a 
uniformity that extends from the core towards the gap and towards the flat side walls. 

For a wide range of flows the velocity distribution normal to a wall can be expressed 
according to an inner law of the wall U+ = A In y+ + B up to some maximum value 

t The KLrmin-Nikuradse expression isf-: = 4.0 log,, Ref k-0.4. 
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of y+. In  the present case the mean axial velocities were normalized with the local 
friction velocity and the coefficients in the logarithmic law found for the traverses 
perpendicular to the top flat surface and for the radial traverses from the rod surface. 
Values of the coefficients A and B (as determined by a least-squares fit) for each 
traverse are given in table 2. Results for the traverses perpendicular to the  flat surfaces 
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FIWRE 4. ('ontours of axial velocity (U/U,, ,)  (Re = 200000): (a) from present experimental da ta ;  
( b )  computed (with secondary flows). 

Range 
Y+ 

Distance (mm) 
from vertical c m t r r  

0 1600 
15 1600 
30 1600 
45 1500 
60 1500 
75 700 
Overall 

Angular position 
from gap centre 

O0 1000 
1 O0 1000 
20O 1000 
30O 1000 
40O 1000 
50° 1000 
60° 1000 
70° 1000 
80O 1000 
Overall 

A 

2.562 
2.584 
2.608 
2.693 
2.67 1 
2.670 
2.638 

2.475 
2.5 19 
2.475 
2.520 
2.54 1 
2.562 
2,540 
2474 
2518 
2.518 

Standard 
deviation of l J ,  

I3 from LSF 

3.919 0409 
3.7 19 0407 
3.918 0243 
4167 0599 
4.219 0289 
4.320 0383 
4008 0251 

5.234 0.304 
5.241 0.190 
5.184 0.554 
5.134 0196 
5.128 0345 
5.188 0.413 
5179 0208 
5230 0327 
5.333 0454 
5174 0318 

TABLE 2 .  Relations in form I/+ = A In y+ + B  for each traverse (axial velocities normalized 
with local friction velocity) 
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all lay on a common line; similarly for all the radial traverses from the rod surfaces, 
However, there were differences between the two sets of results. For all traverses: 

(X( U+) = 0251), from the top flat surface 

(AS( U+) = 0318), from the rod surface 

where S(U+) is the standard deviation of the measured values of U+ from the 
least-squares line. The equations apply for y+ up to 1500, except in the corner regions, 
where the flow is influenced by the presence of the side wall. 

U+ = 2.638 In y++4.008 

U+ = 2-52 8 In y+ f5.174 

4.6. Reynolds stresses 

The Reynolds stresses were measured a t  a Reynolds number of 200000 using the 
rotated hot-wire technique ; the extremely small secondary shear stress -p% was 
not measured. Full details of the results are given in Seale (1981). 

The effective cooling velocity U, experienced by the wire was expressed as 

Ug = U(sin2gl + F coszgl), (9) 

where U is the actual velocity, is the angle between the wire and the direction of 
C, and F is a direction sensitivity coefficient that accounts for the cooling effect of 
the velocity parallel to  the hot wire. Kjellstrom (1974) recommended a value of 004 
for F ,  and in the present work this value was also found to give the best agreement 
between the wall shear stress measured by the Preston tube and that found (after 
extrapolation to the wall) using the hot wire. 

An analysis of the inaccuracies involved in the measurement of the Reynolds 
stresses (see appendix B) indicated that the three normal stresses and the shear stress 
- p Z  are accurate to about i- 7 yo, whereas the transverse shear stress -p& is 
probably not accurate to better than IfI 17 yo. Repeated measurements, using different 
probes, of the axial shear stress - p G  showed a maximum variation of 0.05pU; and 
a typical variation of 0*03pU:, where U, is the local friction velocity. Similar results 
were obtained for the normal stresses and for the transverse shear stress -p%. Since 
over most of the flow adjacent to the top flat surface the values of the transverse 
shear stress were of the order 0.01pU; consistent results were not achieved for this 
stress. Consequently i t  was not possible to analyse the results in terms of an effective 
eddy viscosity parallel to the top flat wall. 

A further check on the accuracy of the Reynolds stresses was obtained by 
comparing the distribution of the axial shear stress, normalized using the local friction 
velocity, with a linear distribution between the wall and the point a t  which the 
gradient of the axial velocity normal to the wall is zero. A typical comparison is shown 
in figure 5. Although there is no reason to assume that this relationship is linear, gross 
departures from linearity would not be expected. Apart from the stresses close to  the 
wall ( y / $  < 0.1) the measured distributions are fairly linear. 

Quite close to the wall (y+ < 200), however, a significant and consistent reduction 
in the axial shear stress below the straight line was observed. The source of this 
discrepancy could not be found despite repeated measurements and careful calibration 
procedures. Anomalous behaviour of the measured secondary velocities were also 
obtained. The region is too far from the wall (y+ = 100-150) for the reduction in shear 
stresses to be caused either by the enhanced heat losses from the wire to  the wall 
(important when y+ < 30, Ota & Kostic 1972) or by the reduced turbulent stress 
component close to the wall. There were strong indications, however, that the source 

14 F 1 . M  123 
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FIQURF, 5 .  Distribution of shear stress -p% perpendicular to top flat wall, 30 mm 
from vertical centreline (Re = 200000). 

of the anomalous behaviour lay in differences in the velocity profile around the probe 
when it was very close to the wall as compared with the calibration jet. 

A contour plot of the turbulence kinetic energy (normalized by the mean wall shear 
stress) is shown in figure 6 (a ) .  Although these contours were derived from a relatively 
coarse grid they clearly indicate convection of turbulent kinetic energy by secondary 
flows. The effect of the secondary flows generated in the corners is easily observed, 
but note also the way the contours in the core of the duct well removed from the 
corners, bulge in towards the centre. 

Alshamani (1978, 1979) observed that axial (u), normal (radial) ( w ) ,  and tangential 
(w) fluctuating velocity components show similar distributions in a number of pipe 
and two-dimensional channel flows. The velocity fluctuations are a minimum a t  the 
centreline, increase steadily as the wall is approached, and reach some maximum 
values close to  the wall. Furthermore, the three fluctuating components vary in a 
similar way with Reynolds number. 

In  the region 0.1 < y/$ < 1 the fluctuating velocities (when normalized by the local 
wall-friction velocity) were shown to be related by simple linear equations, i.e. 

- - 
V+ = A,u++B, ,  W+ =A,G,+B, ,  

where i+ = v/U,, w+ = w/U,, u+ = u /U,  and k+ = k / q .  The curvature in the k+(u+)  
relationship implied by these equations was found to be small, and k ,  could also be 
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FIGURE 6. Contours of turbulence kinetic energy k / U $ ;  Re = 200000: (a) from present 
experimental data; ( b )  computed (with secondary flows). 

expressed as a linear function of &+, i.e. k, = A,u+ + B,. Alshamani examined a wide 
range of published experimental data and found that the coefficients of the linear 
equations varied by about f 29 Yo, although there was a much larger uncertainty on 
the coefficient B, for fully developed pipe flow. Nevertheless, in many experimental 
results there was a fair linear relationship between the fluctuating velocity 
components. 

The Reynolds stresses in the current work have been plotted in the way suggested 
by Alshamani : typical results are shown in figure 7 ( a )  for all traverses normal to the 
top flat wall, and in figure 7 ( b )  for all the radial traverses from the rod surface. Despite 
the considerable scatter, especially of the fluctuating component normal to  the wall 
(c+), the results appear to be capable of a linear representation. Moreover, within the 
level of uncertainty associated with the measurement of the turbulence quantities 
(about f 10 %) the results from all the traverses could be represented by single 
equations : 

k+ = 2.406,- 1.44, fi~+ = 0587u+ + 0167, fi+ = 0*303G+ + 0.441. 

These coefficients are different from those found by Alshamani. 
The ability to express the turbulence quantities in this way emphasizes the 

essential similarity of the turbulence structure in the non-circular subchannel with 
the turbulence structure in a circular pipe. Similar results have been noted by Seale 
(1982) for the turbulence quantities in a triangular duct (Aly et al. 1978), in a square 
duct (Brundrett & Baines 1964), and in the subchannels of a simulated rod bundle 
(Rehme 1977). 

4.7. Secondary velocities 

The procedure given by Mojola (1974) was used to  derive the secondary velocities 
from the response of the hot-wire anemometer. Details of the secondary velocities 
are given in Seale (1981) ; they are plotted in figure 8 ( a )  for velocities parallel to the 
top flat wall, and in figure 8 ( b )  for velocities perpendicular to the top flat wall. Note 
that the secondary velocities have been normalized by the mean friction velocity. 

14-2 
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The tiny secondary velocities were extremely difficult to measure, and the overall 
uncertainty of the secondary velocity W parallel to the top flat wall is estimated to 
be about +0.06Ui, where U, is the mean friction velocity (see appendix B). The 
results were repeatable to within about + 0.05Ui. 

The secondary velocity V perpendicular to the top flat surface reached a maximum 
value (035U;)  very close to  the surface (y+ < 200). This unlikely behaviour is believed 
to be associated with the anomaly noted earlier in the measured shear stresses very 
close to the wall. Even away from the wall the velocity V continued to exhibit greater 
variations than the velocity W at the same point. 

The accuracy of the measurements can be gauged by integrating the secondary 
velocities crossing any closed line within the symmetrical quadrant. The results of 
these calculations are given in table 3 and show a maximum imbalance in the flow 
crossing any vertical line to  be 0.047U;. Across any horizontal line, not near the top 
flat wall, the maximum imbalance was 019U; (partly a reflection of fewer 
measurements along horizontal lines). At y+ < 100 this imbalance across a horizontal 
line was 1.78U;, directed towards the wall. Note that the maximum secondary 
velocity was about 0 - 3 5 U ~ .  The causes of the larger uncertainty on the secondary 
component V could not be found, neither could the persistent error close to the wall 
be eliminated. 

The maximum secondary velocity parallel to the top flat wall is about 1.5 yo of bulk 
velocity and occurs near the walls on the outward secondary flow from the corners 
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FIGUHE 7 .  Turbulence kinptic energy and fluctuating velocities plotted against the axial fluctuating 
velocity: (a )  perpendicular t o  top flat wall (selection of results from all traverses); ( b )  perpendicular 
to the rod surface (all angular positions). Results normalized with local friction velocity. 0, k/U,2; 

e, = O303fi+ + 0.441. 
0. w / U 7 ;  x ,  v / lJ7;  -, k ,  =2.40U+-1.44; - - - ,  W + = 0 . 5 8 7 U + + O 1 6 7 ;  

of the duct. The pattern and magnitude of the corner secondary flows are similar to 
those measured previously by Brundrett & Baines (1964) and Launder & Ying (1972). 
Apart from the secondary flows immediately in the corners there are two large 
rotating cells between the flat wall and the rod, and one cell in the gap region between 
the rod and the vertical axis of the duct. These cells move fluid from the core of 
the duct and direct i t  towards the flat sidewalls above the rods. The gap cell convects 
fluid down the centreline and returns i t  to  the core along the walls of the rod surface. 

5. Predicted results and discussion 
5.1. Axial velocities and turbulence kinetic energies 

A prime object of this work was to see whether use of the 'k-e' turbulence model for 
the (isotropic) eddy viscosity together with a suitable model for the normal Reynolds 
stresses (to generate secondary flows) would allow the measured contours of axial 
velocity and turbulence kinetic energy to be reproduced. If secondary flows are 
excluded from the computations then i t  is not possible to obtain agreement with the 
measured results no matter how the empirical constants are optimized. I n  earlier work 
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1 8 7  
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TABLE 3. Net flows crossing horizontal and vertical lines in symmetrical quadrant of duct 

(Seale 1982), agreement could not be obtained using the Launder-Ying formulation 
for the difference in the normal stresses (equation (6)); hence an alternative approach 
had been necessary in which equation (7) for the source of axial vorticity was derived. 

Use of this new model for the generation of secondary flows did allow the measured 
results to be reproduced. Comparisons between computations and experiment are 
shown in figure 6 for the turbulence kinetic energy, and in figure 4 for the axial 
velocity. Apart from the core region of the duct the results are satisfactory. 
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loo p 120 

FIGURE 8. Secondary velocities normalized with mean friction velocity: (a )  parallel to top flat 
surface ( W ) ;  (b )  perpendicular to top flat surface ( V ) .  0, Present experimental results; x , 
computed. (Distances in mm.) 

5.2. Secondary velocities 

I n  addition to the secondary flows in the sharp interior corners of the duct, the 
algebraic vorticity source yielded three main rotating secondary flow cells ; these are 
shown in figure 9. 

Comparisons between the measured and predicted secondary velocities are shown 
in figures 8 ( a , b ) ;  excellent agreement is obtained between the patterns of the flow 
cells. Velocities predicted and measured can be a factor of 2 different, but in general 
differ by about 30 %. 

5.3. Wall shear stresses 

Wall shear stresses computed both with and without secondary flows are compared 
with those measured in figures 3 (a, b). Suppression of the secondary flows increases 
the variation of the shear stress around the walls of the duet. Apart from near the 
sharp corners, where the finite difference grid was relatively coarse, close agreement 
with the measured shear-stress distribution is obtained when secondary flows are 
included in the computations. 

5.4. Friction factor 

Friction factors were calculated both with and without secondary flows over a range 
of Reynolds numbers and are shown in figure 2 in comparison with the experimental 
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--_+ 
FIGURE 9. Computed distribution of stream function (+/@max) in symmetrical 

quadrant of the duct. (Re = 200000). 

results. The effect of including secondary flows in the calculations is to  increase the 
friction factor by about 3-5 Yo. 

There is close agreement between the measured and predicted friction factors but 
there are differences in their variation with Reynolds number, viz 

f = 0-0376Re-0.190 with secondary flows suppressed, 

f = 00374Re-0'187 with secondary flows included 

These should be compared with the experimental relationship 

6.  Conclusions 
f = 0 0 4 7 5 R e ~ o ~ ~ ~ .  

The following conclusions are for fully developed flow a t  a Reynolds number of 
200000. The friction factors were measured over a range of Reynolds numbers from 
82 800 to  346 700. 

(i) The measured friction factors were represented by f = 0.0475Re-0'206. This gives 
values 2 yo lower than predicted by the Karman-Nikuradse correlation for friction 
factor? in smooth circular pipes. According to the 'laminar-flow ' method of Malak 
et al. (1975), the friction factor for this duct should be 2 %  greater than for the 
equivalent circular pipe. 

(ii) The distribution of axial velocities normal to the walls and normalized with 
the local friction velocity can be expressed by the following inner laws of the wall 
for y+ up to 1500 (except close to the corner regions), i.e. for all traverses normal to 
the flat wall 

U,  = 2.638 In y+ + 4.008, 
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for all radial traverses from the rod surface 

U+ = 2.518 In y+ + 5.174. 

419 

(iii) The distributions of the normal Reynolds stresses and the mean turbulence 
kinetic energy are similar to those observed in a number of pipe and two-dimensional 
channel flows, and for all points in the duct can be represented by the following 
equations 1 k+ = 2*40ti+- 1.44, 

@+ = 0.587ti++O.167, 
@+ = 0*303ti++0*441, 

where the fluctuating velocities ti+, v,, w+ have been normalized using the local 
friction velocity. 

(iv) Secondary velocities have been measured to an accuracy of about + 0 0 6 U ~ ,  
and show a maximum value of 1.5 yo of the bulk axial velocity. 

(v) The ' k+' turbulence model for the isotropic eddy viscosity, together with the 
algebraic vorticity source for generating secondary velocities, enabled the calculation 
of axial velocities, mean turbulence kinetic energies and secondary velocities that  
were in satisfactory agreement with those measured. 

All the experimental work reported here was done by Mr D. Mason, Senior 
Experimental Officer in the School of Mechanical Engineering, University of 
Bradford. 

This paper is based on work performed under United Kingdom Atomic Energy 
Authority Contract WH 35554. Permission to publish is gratefully acknowledged. 

Appendix A. Derivation of algebraic vorticity source 
The algebraic expression (7 )  for the source of axial vorticity is developed in Seale 

(1982). For convenience a summary of the derivation is presented here. 
For the prediction of secondary flows the source of axial vorticity has to be 

calculated (equation ( 5 ) ) ,  and this requires the specification of the distribution of the 
difference in the normal stresses V 2 - W 2 .  It was found, however, that  existing 
measuring and prediction techniques did not allow this distribution to be specified 
with sufficient precision to obtain meaningful results. An alternative procedure is 
proposed in which the difference in the normal stresses is expressed in terms of the 
turbulence kinetic energy, i.e. from the results given in $4.6, 

V $  - = - 0.0441 k$ - 0*0973k+ + 0.1 19. 

This expression is substituted into (5) and reduced to the following approximate form : 

However, this equation remained extremely sensitive to the exact distribution of the 
turbulence kinetic energy, and it became necessary to generate a synthetic distribution 
of k+ based on simple algebraic expressions. These expressions were derived after 
examining the flows in a number of ducts of non-circular cross-section, and were based 
on two assumptions : that  the wall shear stress was uniform (this uniformity has been 
widely observed and is generally attributed to the presence of secondary flow) and 
that the distribution of k+ along a normal to the wall was parabolic. Thus, after 
inspection of the distributions of k, measured in a square duct by Melling & Whitelaw 
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(1976), in a triangular duct by Aly et al. (1978), and in the present duct, the following 
expressions were derived : 

k+ = ki+ + (kw+-ki+)  (1-Y/!Imax)2 (A 2) 

where ki, = kc+(l -2.4(1- y/B,J), k, = k / q ,  U ,  = friction velocity based on 
mean wall shear stress, k,+ = value at the wall (taken as 4),  k,+ = value at centre 
of duct (taken as l),  y = normal distance from wall, tj = normal distance from wall 
to  surface of no shear, $,,, = maximum value of (for any given section). The surface 
of no shear is assumed to be coincident with the position of the maximum velocity 
on the normal from the wall. The algebraic expression for the source of axial vorticity 
was derived by combining (A 1) with (A 2), i.e. 

where 

and 
Yp = 1 -$/fjmax ; Y M  = 1 - 2.4 Y’$, YL = 1 - y/g,,,, 

Y N = { l +  YM+(4-YM)Y,2}-((1-Y,2)(4-YM)). 

In  applying (A 3) i t  is necessary to refer each point in the flow to its nearest wall. 
The flow is then regarded as divided into a number of domains, each bounded by a 
wall and the surface of no shear. Note that YL is a normalized distance from the well 
and varies from 1 a t  the wall to  Yp a t  the surface of no shear: the minimum value 
of Yp is 0 in each flow domain. The direction of rotation of the vorticity is largely 
determined by the term d$/dz, i.e. the rate a t  which the surface of no shear changes 
in the direction parallel to  the wall. 

Appendix B. Estimation of uncertainties in experimental data 
The derivation of the five Reynolds stresses and the two components of the 

secondary velocity using the rotated hot-wire technique involved measurements from 
a hot-wire anemometer relocated five times to the same nominal position and the 
measurement of the mean axial velocity at the same position using a Pitot tube. In  
addition, the hot wire was calibrated before and after each traverse, and mean 
calibration constants derived. The analysis of errors was based on a sensitivity 
analysis done during the design of the experiment. Uncertainties have been estimated 
a t  a confidence level of at least 95 yo. All uncertainties, regardless of type, have been 
combined by the ‘root-sum-squares ’ method. 

Reynolds stresses 

For the derivation of the Reynolds stresses from the measurements, the following 
‘response’ R, has to be constructed from the experimental results a t  each of the five 
hot-wire positions (Mojola 1974) : 

where E and (2); are respectively the d.c. and r.m.8. output from the anemometer, 
E,, and n are the mean calibration constants, and U is the axial velocity measured 
by the Pitot tube. The uncertainties estimated for each measured quantity in R, are 
given in table 4. The uncertainty of Ifr1*6% in the measured response R, of the 
anemometer is incurred a t  each of the five hot-wire positions: its effect on the 
uncertainty of the Reynolds stresses (normalized bg U2)  was estimated from the 
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Uncertainty 
(f%) 

E (d.c. V) 0.03 
(2)i (r.m.5. V) 005 
E2 - Eg 0 5  
U 2  (m/s)2 1 
mean calibration constants 

n 0.3 
B 0 3  

0 8  

1.6 

Typical 
value 

5 
005 
18 

700 

047 
2.6 
7 

TABLE 4. Uncertainties in experimental measurements 

a2 

( + Y O )  

Relocation to 16 pm 0 2  
Angle of wire ( + 0 l 0 )  
Direction sensitivity F( +O.Ol) 0 
Secondary velocities ( + 0 5  yo of U )  

04 

0 
Response R, 6 
Overall uncert,ainty 6 

- 
uw 

(&YO) 

2 
3 
3 
3 

16 
17 

TABLE 5.  Constituents of the uncertainties in the measured Reynolds stresses 

sensitivity analysis and shown in table 5. The sensitivity analysis was also used to 
estimate the size of the remaining sources of uncertainty: errors in relocating the 
probe and in measuring the angle between the wire and the duct axis for each of the 
five hot-wire positions, the assumption for the value of the direction sensitivity 
coefficient F (equation (9)), and the uncertainties in the measured secondary 
velocities. The results are shown in table 5. The overall uncertainty for each Reynolds 
stress varied with position from the walls, and the results, shown expressed as a 
percentage of the quantity being measured, are representative for most of the flow 
domain. However, the analysis showed that no stress could be measured with an 
absolute uncertainty less than 002 U;. 

Xecondary velocities 

The secondary velocities were derived from the measurements of the anemometer 
using the response equations suggested by Mojola (1974). To illustrate the sources 
of uncertainty consider one of these equations reduced to the following simplified 
form : 

where R = (E2 - E;)lIn can be regarded as the response of the anemometer to  the mesn 
velocity, subscripts A and B refer to measurements obtained with the hot wire held 
a t  two different angles to the flow, and subscript 00 refers to measurements taken 
a t  a position in the core of the duct where the secondary velocities are believed to 
be zero. 
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Four major sources of uncertainty are associated with the use of (B 2) : the precision 
of relocating the hot wire after rotation, drift in mean tunnel velocity during a 
traverse, calibration drift during a traverse, and the uncertainty in measuring the 
response R of the anemometer. The position of the hot wire was known to 16 pm. 
It was estimated that this would produce an uncertainty of f 005  yo in U ,  (mainly 
arising from the gradient of axial velocity). The mean tunnel velocity was constant 
to within f 0.05 yo of U,. The uncertainty in obtaining the response R arose from the 
precision in measuring E (fO03yo), and was estimated to  be k 0 1 2 ~ o .  The 
anemometer was calibrated before and after each traverse and a mean calibration 
obtained. The results were accepted if for a given voltage the velocities given by the 
two calibrations did not change by more than 1 yo. It was found that if this condition 
was satisfied then the change in the response R would be less than 0*25y0, despite 
larger changes between the two calibrations in each of the individual calibration 
constants (see table 4). When combined to form the response R the directions of the 
changes in the individual constants were invariably such that they tended to  cancel. 
The response R was formed using the mean calibration constants: uncertainty 
because of differences from the mean was therefore fO.13 yo. 

Combining these four major sources of uncertainty gives an uncertainty in RIR, 
of f 0.18 Yo. The secondary velocity is given by the difference between two such terms. 
Combining the uncertainties using the ‘ root-sum-square ’ method gives an overall 
uncertainty on V / U ,  of about f0*3yo. Expressed in terms of the mean friction 
velocity this becomes f 006U;. 
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